You may use your calculators on this test . . . but make sure you show your mathematics!

1. Find the critical numbers of $f(x)=x^{4 / 3}-x^{1 / 3}$.
2. Find the critical numbers of $f(x)=x^{1 / 3}(x+4)$.
3. Find the critical numbers of $f(x)=(x-3)(x-5)^{2}$.
4. Find the critical numbers of $f(x)=\left\{\begin{array}{ll}25-x & \text { for } x \leq 5 \\ x^{2}-5 & \text { for } x>5\end{array}\right.$.
5. Find the critical numbers of $f(x)=\left\{\begin{array}{ll}16-x & \text { for } x \geq 3 \\ x^{2}-3 & \text { for } x<3\end{array}\right.$.
6. Find the relative minimum of $f(x)=(x-3)(x-4)^{2}$.
7. Find the relative maximum of $f(x)=(x-7)^{2}(x+3)$.
8. Find the relative maximum of $f(x)=x^{2} \sqrt{9-x^{2}}$.
9. If $f(x)=4 x^{2}+\frac{k}{x}$ has a relative extrema at $x=1$, find the value of k.
10. If $f(x)=4 x^{2}+\frac{k}{x}$ has an inflection point at $x=-1$, find the value of k.
11. For what values of x is $f(x)=\frac{7}{5-x}$ concave down?
12. For what values of x is $f(x)=\frac{3}{x+2}$ concave up?
13. For what values of x is $f(x)=x^{2} e^{x}$ concave down?
14. Find the absolute maximum of $f(x)=5-6 x^{2}-2 x^{3}$ on $[-3,1]$.
15. Find the absolute minimum of $g(x)=x^{4}-5 x^{2}+4$ on $[0,2]$.
16. Find the absolute maximum of $h(x)=1-x^{2 / 3}$ on $[-1,8]$.
17. Find all the values of c that satisfy the Mean Value Theorem for $f(x)=x^{2}+x$ on $[-4,6]$. You may assume the MVT holds for f on the given interval.
18. Find all the values of c that satisfy the Mean Value Theorem for $f(x)=x^{3}-3 x^{2}+2 x$ on $[0,2]$. You may assume the MVT holds for f on the given interval.
19. Find the inflection points (if any) of $f(x)=x^{3}-x^{2}+x+1$.
20. Find the inflection points (if any) of $2 \cos 2 x$ on $(0, \pi)$.
21. Use the Second Derivative Test to find the relative extrema of $f(x)=x^{3}-5 x-2$.
22. Use the Second Derivative Test to find the relative extrema of $f(x)=x^{4}-2 x^{2}+7$.
23. The graph of f^{\prime} is given below.

Determine where f has relative maximums and minimums then state the intervals where f is concave up or concave down. (Ignore the "F")

24. The graph of f is given below.

Label "A" where $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)>0$.
Label "B" where $f^{\prime}(x)>0$ and $f^{\prime \prime}(x)<0$.
Label "C" where $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$.
Label "D" where $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0$.

Answers (not complete solutions)

1. $x=\frac{1}{4}$ and $x=0$
2. $x=-1$ and $x=0$
3. $x=\frac{11}{3}$ and $x=5$
4. $x=5$
5. $x=0$ and $x=3$
6. Relative minimum of 0 at $x=4$
7. Relative maximum of 148.148 at $x=.333$
8. Relative maximum of 10.392 at $x=-2.449$ and relative maximum of 10.392 at $x=2.449$
9. $k=8$
10. $k=4$
11. $(5, \infty)$
12. $(-2, \infty)$
13. $(-3.414,-.586)$
14. Absolute maximum of 5 at $x=-3$ and $x=0$
15. Absolute minimum of -2.250 at $x=1.581$
16. Absolute maximum of 1 at $x=0$
17. $c=1$
18. $c=.423$ or $c=1.557$
19. (.333, 1.259)
20. $\left(\frac{\pi}{4}, 0\right)$ and $\left(\frac{3 \pi}{4}, 0\right)$
21. Relative maximum of 2.303 at $x=-1.291$

Relative minimum of -6.303 at $x=1.291$
22. Relative minimum of 6 at $x=-1$

Relative minimum of 6 at $x=1$
Relative maximum of 7 at $x=0$
23. Relative minimum " A " and " E "

Relative maximum "C"
Concave up on $(-\infty, B) \cup(D, \infty)$
Concave down on (B, D)
24. Below.

